
Clusters and droplets in the q-state Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 1873

(http://iopscience.iop.org/0305-4470/15/6/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 1873-1883. Printed in Great Britain 

Clusters and droplets in the q-state Potts model? 

Antonio ConiglioS and Fulvio PeruggiP 
$ GNSM and Istituto di Fisica Teorica, Mostra d’oltremare pad 19, 80125 Napoli, Italyll, 
and Center for Polymer Studies, Boston University, Boston, MA 02215, USA 
8 GNSM and Istituto di Fisica Teorica, Mostra d’oltremare pad 19, 80125 Napoli, Italy 

Received 11 August 1981, in final form 22 December 1981 

Abstract. A Potts correlated polychromatic percolation is studied. The clusters are made 
of sites corresponding to a given value of the q-state Potts variables, connected by bonds 
being active with probability pB. To treat this problem an s-state Potts Hamiltonian 
diluted with q-state Potts variables (instead of lattice gas variables) is introduced to which 
the Migdal-Kadanoff renormalisation group is applied. It is found for a particular choice 
of pB = 1 -evK (where K is the Potts coupling constant divided by the Boltzmann factor) 
that these clusters, called droplets, diverge at the Potts critical point with Potts exponents. 

Cluster models have often been employed to describe phase transitions (Fisher 1967, 
Binder 1976, Domb 1976). One major problem is the definition of a proper cluster, 
usually called a droplet, which is required to diverge at the critical point with the right 
exponents. 

In site percolation problem clusters are defined as the maximal sets of nearest- 
neighbour particles distributed on a lattice. In standard percolation the particles are 
randomly distributed, while in correlated percolation they interact (see review articles 
by Stauffer (1979) and Essam (1980)). The case studied most is that in which the 
particles are correlated with ferromagnetic interactions as in a lattice gas or the king 
model (in the Ising model the clusters are made of ‘down’ spins). Although these 
king clusters diverge at the Ising critical point for dimensionality d = 2 (Coniglio et 
a1 1977), this is not the case for d = 3 (Muller-Krumbhaar 1974). 

More recently a generalisation of this problem, the site bond Ising correlated 
percolation, has been proposed as a model for gelation (Coniglio et al 1979). In this 
model a cluster is made of nearest-neighbour particles connected by active bonds, the 
particles interact according to the lattice gas Hamiltonian, the probability of a bond 
being active is p B  and non-active 1 - p B .  Note that the bonds are only introduced to 
define the connectivity between two nearest-neighbour particles and do not affect 
their interacting energy and therefore the particle distribution. Coniglio and .Klein 
(1980), using the lattice gas Potts formulation of this model, have shown that these 
new clusters diverge at the king critical point for any d provided that p B =  
1 -exp(-2KIP) where KI is the nearest-neighbour king interaction and p = (kBT)- ’ .  
They called these clusters Ising droplets. Very recently the site bond Ising correlated 
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percolation has also been investigated by Monte Carlo methods (Stauffer 1981, 
Roussenq 1981) with results in agreement with the above predictions. 

In the same spirit here we treat site bond Potts correlated percolation (SBPCP). 
Consider the usual 4-state Potts Hamiltonian 

where vi = 1 , .  . . , q. For each configuration { v i }  associate to each site a particle of 
species r if vi = r. The species may be characterised by 4 different colours. We consider 
clusters made of particles of species 1 connected by nearest-neighbour random bonds, 
each one having a probability pB of being active and 1 -pB of being non-active. In 
the following, unless explicitly mentioned, we shall always refer to particles and clusters 
of species 1.  

To study this problem we want to give first a Hamiltonian formalism for such 
percolation problems and then apply the Migdal-Kadanoff renormalisation group 
(MKRG) (Migdal 1976, Kadanoff 1976). Note that from the Potts Hamiltonian given 
in (1) it is only possible to evaluate the Potts free energy, from which all the ‘thermal’ 
properties can be derived, such as the order parameter, the susceptibility and so on, 
but not the ‘connectivity’ properties which pertain to the percolation problem, such 
as the percolation probability, the mean cluster size and so on. Therefore, we need 
to find another Hamiltonian from which it is possible to obtain the generating function 
for the SBPCP. Kastleyn and Fortuin (1969, 1972) have shown that the generating 
function for the random bond percolation problem is given by 

where FPotts(s) is the free energy of the s-state Potts model (Fpotts(l)=O). As a 
generalisation of this result we shall show in the appendix that the generating function 
of the SBPCP is given by dFDp(s)/dsls=l where FDp(s) is the free energy of the following 
dilute s-state Potts model 

- P ~ D P = - P ~ P + J  1 (8uiu,-1)8v,18v,l-h (Sail-1)SYil (2) 
(ii) i 

where ai = 1 , .  , . , s is an s-state Potts variable, Xp is the 4-state Potts Hamiltonian 
(l), which determines the particle distribution, and pB = 1 - exp(-J) is the probability 
of having a link between two nearest-neighbour particles of species 1. h is the ghost 
field for such a percolation problem. In the following we shall always consider the 
Hamiltonian (2) in the limit s + 1. 

For 4 = 2 the Hamiltonian (2) coincides with the more familiar lattice gas Potts 
model (Nienhuis et a1 1979, Murata 1979, Coniglio and Klein 1980, Wu 1980, Kondor 
and Temesvari 1981). Hamiltonian (2) can easily be generalised to study percolation 
of all the other species of particles, with different interactions and chemical potentials. 
This corresponds to a site bond Potts correlated polychromatic percolation, which 
contain as a special case the random site polychromatic percolation studied by Zallen 
(1977) and Halley and Holcomb (1978) (see appendix for more details). A different 
polychromatic site correlated percolation has been introduced by Stanley (1979) and 
Stanley and Texeira (1980) to describe the anomalous properties of supercooled water. 

In order to understand the MKRG analysis better, which will be done later, we 
note first some properties of the Hamiltonian (2). 
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(i) In the limit H -+ -cc all the variables vi = 1, and Hamiltonian (2) becomes a 
pure s-state Potts model, describing therefore random bond percolation in the s + 1 
limit (Kastleyn and Fortuin 1969, 1972). This is consistent with the fact that the 
SBPCP for H -+ ---CO becomes a random bond percolation since all the sites are occupied 
by particles of species 1. 

(ii) For J = h = 0 Hamiltonian (2) coincides with the q-state Potts Hamiltonian (1). 
(iii) Finally, it is not difficult to show that the Hamiltonian (2) is equivalent to an 

asymmetric (s + 1 -q)-state Potts model (see Coniglio and Klein 1980, Coniglio et a1 
1981 for q = 2) namely 

where F~ is a new Potts variable which assumes s - 1 + values. If we choose J = K 
and H = h = 0 in the limit s -+ 1 Hamiltonian (3) becomes a q-state Potts model. 

This is true for any q and d ;  therefore the special clusters made of particles of 
species 1 connected by active links with probability pB = 1 - eCK, which we call ‘Potts 
droplets’, are expected to exhibit the same Potts singularities at the Potts critical point 
K = K,, H = 0. That is, we expect that for H = 0 the linear dimension of these Potts 
droplets diverges as 5 - ( K  -Kc)-” and the mean cluster size S diverges as S -  
(K  -Kc)-’ where v is the Potts correlation length exponent and y the susceptibility 
Potts exponent. Also we expect first-order percolation transitions for q > qc where 
the Potts model exhibits first-order thermal transitions. 

We now apply the MKRG (Migdal 1976, Kadanoff 1976)’to Hamiltonian (2) using 
the same procedure adopted by Berker et al (1978). The recursion relations in the 
limit s -+ 1, for dimension d = 2 and coordination number of the lattice c, are 

x ’  = x’(x, y, w, f ,  g, t )  = DIC 

y’  = y’( y, w, z )  = I/G 

W I =  wi (y ,  w, Z )  = W ~ F I I A G  

= z ( ~ ,  W ,  Z) = A G ~ / F ~ I  

f ’ = f ’ ( x ,  y, w, f ,  g ,  t )  = f2BD/x4AC 

g’ = g’(x, y, w, f ,  g, t )  = x4AC2/B2D 

t i  = t y X ,  y, W ,  Z, f ,  g, t )  = X~ACEIBDF 
J K where x = e  , y = e  , w = eHlc, f =eh/‘; z, g, t are auxiliary variables which we need 

to solve the system of equations in closed form, and 

A = y 4 + ( q  - 1 ) w 4  
B = x2y4 + (x’ - l )y4pg2  + (4 - l ) ~  4 w 4 2  t 

~ = ~ 4 + 2 ( ~ 2 - 1 ) ~ ~ p ~ ~ + ( ~ - 1 ) ~ ~ ~ ~ t ~  
D =y4+(x4-  l)y4fg4+(q - l ) ~  4 w 4 4  t 

E = y 2  + ( x 2  - l ) y 2 Y g 2 t 2  + ( y + 4 - 2)x w z t 2 4 2 2  
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F = y 2  + ( y 2  + 9 - 2 )  w4z2 

G = 1 + ( 2 y 2  + 4 - 3) w4z4 

I =  1 +( y 4 + 4  -2)w4z4. 

Note that equations (4b)-(4d) are independent of the variable J and coincide with 
the recursion relations of the q-state Potts Hamiltonian (1). 

The case 4 = 2 (Ising correlation) has been studied by Coniglio and Klein (1980). 
Here, for convenience, we give the main results for this case. 

Corresponding to z* = g* = t* = 1 and h* = 0, there are four non-trivial fixed points 
for the other variables. 

(9 J = JT, K = 0 ,  H = -m. 

This corresponds to random bond percolation. 

(ii) J = J :  =o, K = K,, H=O. 

This corresponds to the Ising fixed point with the Ising scaling exponents Y K  = 0.747, 
Y H  = 1.879, and no percolation. 

(iii) J = J T  =K,, K = K,, H=O. 

This corresponds to percolation which occurs at the king critical point with the special 
value pB = 1 - e-K. Besides the king scaling exponents y K  and y H  there is also a scaling 
power related to the variable J, yJ ,  = 0.494, while yh = Y H  = 1.879. 

(iv) J = J:, K = K,, H=O. 

This describes percolation which occurs at the Ising critical point for all values of PB 
such that 

1 - e - K q 7 B s l .  ( 5 )  

Here besides the Ising scaling powers y K ,  y H  we have Yh = 1.945 while yJ4 < 0. J is an 
irrelevant variable t. 

The interplay of all these fixed points gives rise to the phase diagram of figure 
l ( a ) .  The percolation lines have been calculated for fixed values of pB. All these 
lines end at the king critical point for values of pB satisfying ( 5 ) .  For p B  < 1 - e-Kc 
they end above K,. Any point, in such a phase diagram, where a percolation transition 
occurs, except the Ising critical point H = 0, K = K,, is characterised by random 
percolation exponents, whereas if we approach the king critical point along the 
direction H = 0, K + K,, we find that the connectedness length 5, and the mean cluster 
size S diverge as 

5, - ( K  - Kc)-”’ S - (K  - Kc)-”’ 

for values of pB given by ( 5 ) .  Here vI = l / y K  = 1 is the two-dimensional king correla- 
tion length exponent, and yp = 2( y h  - l ) / y K  = 1.890, where the exact value y~ = 1 has 
been used. Note that this exponent is larger than the king susceptibility exponent 
y I  = 1.75. This exponent was first calculated by Sykes and Gaunt (1976) who found, 

i Note that in Coniglio and Klein (1980) there are two misprints relative to the values of y~~ and yh. The 
correct values are given here. 
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of the cases q > qc, all of which have critical lines 
ending at the critical point H = 0, K = K, for pB 2 

’: = 0.667 

using series expansions, yp = 1.91 f 0.01. On the other hand, if we choose pB = 1 - e-K 
we obtain 

&-(K-K,)-”’ S - ( K  - K p  

both connectedness length and mean cluster size diverge with king exponents. These 
have been called Ising droplets since they diverge as the droplets in Fisher’s droplet 
model (Fisher 1967). Note that p B  has been chosen as a function of temperature. 

Of course one would have obtained the same critical behaviour even for a choice 
of pB = 1 -epKc independent of the temperature, but with the choice p B  = 1 -e-K one 
can describe the droplets for all temperatures, due to the property of Hamiltonian 
(2) for q = 2 of being an Ising Hamiltonian for such a choice of p B .  

To complete the picture, we have drawn in figure 2 ( a )  the critical threshold for 
the bond probability p B  as a function of H for fixed values of T. For T = CO we have 
site bond random percolation (Agrawal et a1 1979). For T = T, there is a discontinuity 
at H = 0. The line at H = 0 corresponds to the bond percolation threshold on a dilute 
lattice which is made of the incipient infinite cluster of sites at the Ising critical point. 
As the point p g  = 1 -epKc is approached from small values of pB,  the connectedness 
length 5, and the mean cluster size S diverge as 

5, - ( P  - P ;  )-”” s - ( p  - p E ) - Y ”  

where Y B  = 1/yJ3 = 2.022, Y B  = 2( y H  - 1)/yJ3 = 3.539, and the exact value y H  = 1.875 
has been used. If p B  increases from p g  to 1 there is no formation of an infinite cluster 
with particle density larger than zero; instead we shall always be at the onset of an 
infinite cluster, with the incipient infinite cluster becoming more compact. 
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Now let us consider the case q > 2. We still found as before four non-trivial fixed 
points (see table 1): JT, which corresponds to pure random bond percolation, and 
the other three which occur at the Potts critical point H = 0, K = K,. J $  = 0 corres- 
ponds to the thermal Potts phase transition and the absence of percolation. JT = K, 
is a fixed point where the scaling power relative to percolation quantities is the same 
as the thermal Potts scaling power. As for q = 2, this fixed point describes those 
special clusters, called droplets, which have the same singularities as the Potts model 
at its critical point. In particular for q > qc we expect a first-order percolation transition 
as for the thermal Potts transition, although the MKRG used here does not show any 
first-order transition except at q = a. The last fixed point occurs at J = J4* where, as 
for q = 2, the scaling powers associated to K and H coincide with the Potts thermal 
scaling powers y K  and y H  but y h  # yH.  Therefore the connectedness length diverges 
as the thermal Potts correlation length, but the mean cluster size diverges with an 
exponent different from the susceptibility exponent. 

An interesting new result is found for a particular value of 4 = qc = 16. Here the 
two fixed point lines JT (4) and J z  (4) intersect (figure 3). For q < 41, the fixed point 
structure is the same as for 4 = 2 with yJ,>O and yJ,<O, while for q >qc, yJ,<O 
and yJ4 > 0. 

For q = qc, yJ3 = yJ, = 0: J is marginal! 
We conjecture that 41, coincides with the value qc above which the thermal phase 

transition becomes of first order. The reason for such conjecture is better understood 
by looking at the result of the MKRG for q = CO. For such values of 4 = CO we find at 
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Figure 3. Schematic representation of the J ;  and J: dependence on q. Flow lines are 
drawn that show the interchange between repulsive ( y ,  > 0) and attractive (y, < 0) behaviour 
of the two fixed points below and above qc; at q = 4, = 16 we have J g  = J $  with y, = 0. 
Note that in the limits q + 1 and q --*CO the fixed points JT and J $  respectively describe 
pure random bond percolation. 

the fixed point J; =0, K,=CO, H = O  the scaling power YK = y H  = 2 describing a 
first-order transition in the thermal problem. At the fixed point describing the Potts 
droplets J: = K, = 03 we have YK = y H  = 2 with Y J ,  < 0. This .fix@ point therefore also 
describes a first-order percolation transition of the droplets as K + CO for all values 
of p B  such that 1 2 p B  > 1 -e-’:. 

At the other fixed point we find JZ = JT and y,, = yJ,  describing random bond 
percolation in the variable pB = 1 - e-J. This is easily understood because when q = CO 
the density of particles is unity at K, = CO and then jumps to l / q  = 0 for K < K,. 

Therefore at K ,  the fixed point JZ describes random bond percolation in a lattice 
where all the sites are occupied. Since the fixed point structure is the same for all 
q > 41, we believe that the same first-order transition picture as for q = 03 is also valid 
for these values of q. Therefore we are led to conjecture that 4, = qc, although the 
MKRG shows only first-order transitions for q = CO. 

In conclusion we have considered a q-state Potts model. Different species of 
particles or colours have been associated to the q different values of the Potts variables. 
We have presented a Hamiltonian formalism which enables us to study a percolation 
problem in which clusters are made of particles of species 1 connected by nearest- 
neighbour bonds, each one having a probability pB of being active. For d = 2 we have 
applied the MKRG and found for pB = 1 in the H - T plane a line of percolation points 
which ends at the Potts critical point H = 0, K = K,. At this point, due to the symmetry, 
the other species of particles also percolate at the same time. The clusters diverge 
with random percolation exponents along the curve, while at H = 0, K = K,  the linear 
dimension of clusters diverges with the thermal Potts correlation length and the mean 
cluster size with an exponent different from the susceptibility exponent. If pB = 1 - e-K, 
where K is the Potts coupling constant, both the linear dimension and the mean 
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cluster size diverge with Potts exponents as H = 0 and K -* K,. We have called these 
clusters Potts droplets. Above q,, therefore, both types of clusters (pB = 1, pB = 1 - e-K) 
exhibit first-order transitions. We have also found a value of 4 = 41, where pB become 
a marginal variable. It has been conjectured that 41, = qc. 

It would be of much interest to study this problem and to verify this conjecture 
by using other approaches. 

Table 1. Fixed point values and scaling powers associated with the phase transitions in 
the Hamiltonian model (2) for some representative values of q. 

4 eK' YK YH e'* YJ yh Fixed point 

1.839 0.495 1.879 JT 
10.214 -1.487 1.945 J:  2 1.839 0.747 1.879 

16 3.000 1.170 1.835 3.000 0 1.835 J ?  = J :  
4.000 -0.322 1.834 JT 
2.419 0.226 1.818 J:  

45 4.000 1.356 1.834 

m m 00 -m 2.000 JT 
1.618 0.611 1.899 J:  2.000 2.000 

Appendix 

Consider the Potts Hamiltonian on a regular lattice of N sites 

-P%?p= K C - 1)  - H  (Svil - 1) 
( i i )  i 

where each value of the variable vi = 1, . . . , q is associated to a particular species of 
particles. In the site bond Potts correlated percolation the clusters are made of particles 
of species 1 connected by nearest-neighbour random bonds, each one having probabil- 
ity pB of being active. In the following, unless explicitly mentioned, we shall always 
refer to particles and clusters of species 1. 

The quantities of interest in percolation are the average number of clusters of s 
particles per site (n,), the average number of clusters per site 

the percolation probability 

( p  is the density of particles), the mean cluster size 

and the pair connectedness function 

Pij = b i j >  

where yij  is 1 if the sites i and j belong to the same finite cluster, 0 otherwise. Z' is 
the sum over all finite clusters. Here the brackets stand for the average over the Potts 
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and bond configurations, namely 

where E{v,} is the set of all bonds in the sublattice made of sites occupied by the 
particles of species 1 in the configuration v,. C is a subset of E{vi} and D = E{v,} - C ;  
IC1 and ID1 are the number of bonds respectively in the subsets C and D. Note that 

for every configuration { v i } .  

of the following dilute q-state Potts model 
We shall show now that we can obtain equations (A2)-(A5) from the free energy 

- P ~ D P = - P ~ P + J  1 ( a v c v , - l ) a u , l a v , l  - h  C (avi l - l )av i l  (A7) 
(ii) i 

where ci = 1 , .  . . , s are also Potts variables and Xp is given by (Al) .  We give the 
derivation here, following closely the procedure of Murata (1979) and Coniglio and 
Klein (1980) (see also Coniglio et a1 (1981) for more details). 

Starting from (A6) we can write the partition function in the following way: 

where 

ZPotts{vJ= C I3 (qB+pBavtv,) I3 [exp(h)+(l-exp(h))av,ll 
{Uc} ( t I ) E E ( % )  ret+,} 

is the partition function of the s-state Potts model defined on the sublattice made of 
those sites occupied by particles of species 1 in the configuration {v i } .  6 {v l }  is the set 
of vertices in this sublattice and E{v ,}  the set of bonds; qB = exp(-J), p B  = 1 -qB. In 
(A8) the term szi(l-sutl’ is due to the trace over all the sites occupied by particles of 
species different from 1. Following the usual procedure as for the regular lattice (Wu 
1978), (A9) becomes 

ZPotts{v,I = C pF’q!? II [(s - 1) exp(hs,) + 11 (A101 
C s E { u ,  } r 

where r labels the clusters in the configuration C and s, is the number of sites in the rth 
cluster. Equations (9) and (10) give the same distribution as in (A6). 

Let us now define the generating function G in the following way: 

From (A10) we have 
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which are related to equations (A2)-(A4). Analogously the pair connectedness func- 
tion p i j  can be obtained by introducing inhomogeneous fields hi at each site i :  

a* G 
pij = (-) ahi ahj hi=hj=O 

It is convenient to note that with the formalism described here one can treat a 
very general percolation problem, in which the sites may be occupied by different 
species of particles, each particle interacting only with particles of the same species r 
with a nearest-neighbour coupling constant K, and with a chemical potential H,. The 
clusters are made with particles of the same species connected by nearest-neighbour 
links, each one having a probability pB, = 1 -exp(-J,) of being active. This general 
percolation problem is obtained by generalising (Al )  and (A2) in the following way: 

4 4 
- P ~ D P = - P ~ P + C  J r ( S U z ,  -1Mu,fiV,,-- C h,(a,,i - 1 P v C r -  (A171 

( I J )  r = l  r = l  

h, is the ghost field relative to the particles of species r. 
As before we can define the generating function for the species r, G, = (d FL)p/ds),=l 

where FLL is the free energy per site obtained from (A6) in which Jt = 0 for any t 
except t = r. The derivatives of G, with respect to h, give all the other percolation 
quantities relative to species r. 

This general percolation problem, which we call site bond Potts correlated poly- 
chromatic percolation, contains as a particular case the random site polychromatic 
percolation treated by Zallen (1977) and Halley and Holcomb (1978) if one choses 
p, = 1 and K, = 0 for any species r. 
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